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Abstract: As one of the representatives of intelligent algorithm, Particle Swarm 
Optimization (PSO) has been widely concerned and applied since it was proposed. 
However, the traditional Particle Swarm Optimization (PSO) algorithm has some 
disadvantages, such as premature convergence, local optimization and lo resolution 
accuracy. In order to solve the problems in the algorithm, this paper proposes a dynamic 
inertia weight Particle Swarm Optimization algorithm based on Gaussian Disturbance. 
Through testing experiments with 5 benchmark functions, the improved algorithm has 
significantly improved its global search ability and optimization accuracy, and also 
overcomes the shortcoming of traditional Particle swarm Optimization (PSO). 

1. Introduction 

Particle Swarm Optimization (PSO) is a bionic intelligent Optimization algorithm proposed by 
Kennedy et al[1] in 1995. It is simple and easy to implement. After being put forward, it has gained 
widespread attention and achieved great development. It has been applied in many fields [2-4]. 

The traditional particle swarm optimization algorithm can find the optimal solution quickly and 
accurately when it is used in the optimization of unimodal functions. It has good results. However it 
is easy to fall into the local optimum, and the convergence speed is fast when it is used in the 
optimization of multimodal functions. The traditional particle swarm optimization algorithm cannot 
jump out of the local optimal solution, so that the global optimal value cannot be found. In response 
to the problems, Li Rongyu et al [5] proposed an improved particle swarm optimization algorithm 
based on levy flight; Qi Xiaobo et al [6] proposed a chaotic particle swarm hybrid algorithm; Wang 
Wenyi et al [7] proposed a hybrid algorithm combining particle swarm optimization and genetic 
algorithm. The improved algorithms have certain improvement than the original algorithm, but 
there are still some shortcomings in the aspects of global optimization ability and optimization 
precision. 
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2. Algorithm ideas and steps 

2.1 Particle Swarm Optimization.  

Particle swarm optimization is derived from the predation behavior of birds. The easiest and 
most effective strategy for birds looking for food is to search for the area around the bird closest to 
the food. In the algorithm is expressed as: Each particle represents a potential solution. The quality 
of particles is judged by fitness. Fitness is calculated from the objective function or specific 
optimization problem. The particle's velocity vector determines the direction and distance of the 
particle's movement. The traditional particle swarm algorithm steps are described as follows: 

a) Initialization：The particle position and the velocity vector of particle are randomly generated 
within a prescribed range. 

b) Iterative optimization: The fitness value of the particle is calculated and compared to find and 
record the position of the current optimal solution. According to the optimal position of the 
individual and the optimal position of the population, the speed and position of the particle are 
updated to search the entire solution space. 

c) Algorithm termination：When the condition is met, the loop is terminated and the optimal 
solution is returned. 

Among them，the velocity updating formula of particle is: 

𝑉𝑉𝑖𝑖𝑖𝑖𝑘𝑘+1 = 𝜔𝜔𝑉𝑉𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑐𝑐1𝑟𝑟1�𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘 � + 𝑐𝑐2𝑟𝑟2(𝑃𝑃𝑔𝑔𝑔𝑔𝑘𝑘 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘 )                   (1) 

The position updating formula of particle is: 

𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘+1 = 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑉𝑉𝑖𝑖𝑖𝑖𝑘𝑘+1                                               (2) 

In the formula, 𝜔𝜔 is the inertia weight defaults to 1. Vid is the speed of the particle. 
X=(X1,X2,…,Xn) represents a population of n particles. Xi=( Xi1,Xi2,…,XiD)T indicates the 
position of the i particle in the D-dimensional search space. k is the number of iterations. c1 and c2 
are non-negative constants called acceleration factors. R1 and r2 are random numbers in the interval 
of [0,1]. 

2.2 Dynamic inertia weight.  

The dynamic inertia weight indicates that ω changes as the number of iterations k changes. By 
comparison, this paper use the inertia weight formula put forward in literature [8]. The specific 
formula: 

ω = 𝜔𝜔𝑠𝑠 − (𝜔𝜔𝑠𝑠 − 𝜔𝜔𝑒𝑒)( 𝑘𝑘
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

)2                                  (3) 

Compared to fixed inertia weights, dynamic inertia weights can search for a larger range at the 
beginning of the search and a more precise search at the end of the search. Therefore, the global 
search ability and search accuracy of the original algorithm can be improved. However, when 
dealing with multimodal functions, the algorithm is still easy to fall into local optimum. So 
Gaussian Disturbance is added on the basis of dynamic inertia weight to further improve the search 
ability of the algorithm. This enables the algorithm to jump out when it is stuck in the local 
optimum and continue to search for the global optimum. 
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2.3 Dynamic inertia weight particle swarm optimization algorithm based on Gaussian 
Disturbance.  

Aiming at the shortcomings of NPSO algorithm in searching ability, this paper proposes a 
dynamic inertia weight particle swarm optimization algorithm based on Gaussian Disturbance 
(NGPSO). The core idea of the algorithm is to enhance the search ability of the algorithm by adding 
Gaussian Disturbance to the position update formula. The improved algorithm not only has the 
ability to jump out of local optimum but also improves the search accuracy. The new location 
update formula: 

𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘+1 = 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘 (1 + ε)                                             (4) 

𝜀𝜀 is a random number obeying a normal distribution. Different from most improved algorithms, 
this paper does not increase Gaussian Disturbance in each iteration of the loop. Gaussian 
Disturbance is only added if the original algorithm performs iterative update times more than 10 
times and the global optimal value has not changed. This makes the algorithm not blindly disturbed 
during the process, which largely retains the advantages of the original algorithm. It not only 
reduces the time complexity of the algorithm but also improves the efficiency and accuracy of the 
algorithm. The specific steps of the NGPSO algorithm are as follows: 

Step 1 Initializes the position and velocity of the particle 
Step 2 Calculates the particle fitness value, and compares the individual extremum and the group 

extremum 
Step 3 Update the position and velocity of the particles according to formula (1)(2)(3) 
Step 4 Determines whether the global optimal value has not changed 10 times. If it changes, go 

directly to Step 6. If there is no change, go to Step 5 
Step 5 Carries out Gaussian Disturbance to the current position of the particle according to 

formula (4) 
Step 6 Determines whether the termination condition is satisfied, and if it is satisfied, ends the 

loop, and if not, returns to step 2 

3. Simulation experiment 

In order to verify the performance of the algorithm, this paper compares the three algorithms 
NPSO, GPSO and NGPSO. GPSO is a Gaussian Disturbance particle swarm optimization algorithm 
with default inertia weight of 1. In the experiment, the population size was set to 20, 𝜔𝜔𝑠𝑠 = 0.9,𝜔𝜔𝑒𝑒 =
0.4, both c1 and c2 are set to 1.49445 and the number of iterations is 300. The test function is as 
follows: 

f1(x) = 1
4000

∑ 𝑥𝑥𝑖𝑖2 − ∏ cos �𝑥𝑥𝑖𝑖
√𝑖𝑖
� + 1𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1    x ∈ [−600,600] 

f2(x) = ∑ [100(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖2)2 + (1 − 𝑥𝑥𝑖𝑖)2]𝑛𝑛−1
𝑖𝑖=1    x ∈ [−2.048,2.048] 

f3(x) = −20 exp�−0.2�1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 � − exp �1

𝑛𝑛
∑ cos(2𝜋𝜋𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 � + 20 + e 

x1, x2 ∈ [−5,5] 
f4(x1,x2) = [𝑥𝑥12 − 10 cos(2𝜋𝜋𝑥𝑥1)] + [𝑥𝑥22 − 10 cos(2𝜋𝜋𝑥𝑥2)] + 20    

x1, x2 ∈ [−5.12,5.12] 

f5(x1,x2) = 
𝑠𝑠𝑠𝑠𝑠𝑠�𝑥𝑥12+𝑥𝑥22

�𝑥𝑥12+𝑥𝑥22
+ 𝑒𝑒

𝑐𝑐𝑐𝑐𝑐𝑐2𝜋𝜋𝑥𝑥1+𝑐𝑐𝑐𝑐𝑐𝑐2𝜋𝜋𝑥𝑥2
2 − 𝑒𝑒    x1, x2 ∈ [−2,2] 

Analysis of experimental results. The experimental results are shown in the figure, and Table 1 
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records the specific values of the experimental results. 

 
Fig.1 f1 function                  Fig.2 f2 function 

 
Fig.3 f3 function                  Fig.4 f4 function 

 
Fig.5 f5 function 
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Table 1 Experimental result table 

Function Optimal fitness Algorithm Fitness 
 

f1 
 NPSO -0.2487 
0 GPSO -0.0029 
 NGPSO -2.6864e-05 

 
f2 

 NPSO -7.0875e-29 
0 GPSO -5.1835e-31 
 NGPSO -2.1187e-33 

 
f3 

 NPSO -2.2027e-15 
0 GPSO -0.0034 
 NGPSO -3.3867e-05 

 
f4 

 NPSO -0.1990 
0 GPSO -0.0132 
 NGPSO -1.3208e-04 

 
f5 

 NPSO 0.9615 
1.0156 GPSO 1.0148 

 NGPSO 1.0155 

The experimental data is averaged from 100 experiments. It can be seen from the experimental 
results that the improved NGPSO algorithm has stronger global search ability and is less likely to 
fall into local optimum when dealing with multimodal function (f1, f4, and f5) whose local 
maximum values are close to global maximum value. It also has better stability. When dealing with 
the unimodal function, although the Gaussian Disturbance has an impact on accuracy, NGPSO also 
has a good ability to find the result. NPSO is easy to fall into local optimum when dealing with 
multimodal functions whose local maximum value tends to the global maximum value, but it has 
better performance in the unimodal function (f3). GPSO has improved in search ability, but GPSO 
is still not as good as NGPSO in optimizing accuracy. In summary, the NGPSO algorithm improves 
the PSO algorithm, which is prone to premature convergence, falls into local extremum, and has 
low accuracy. It has achieved better results in experiments. 

4. Summary 

This paper adds Gaussian Disturbance to the dynamic inertia weight particle swarm optimization 
algorithm. Let the algorithm have the ability to jump out of the local optimal solution when it falls 
into the local optimum, which greatly improves the global search ability of the algorithm. The 
improved algorithm has better performance in multimodal function. Different from most improved 
algorithms, the Gaussian Disturbance added in this paper is a conditional disturbance in the 
optimization process, not a blind disturbance. This makes the algorithm both improved in search 
abilities and search accuracy. 
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