
A Dynamic Inertia Weight Particle Swarm Optimization
Algorithm Based on Gaussian Disturbance

Fang Yiqiua, Cheng Yuanb, and Ge Junweic
College of Computer Science and Technology, Chongqing University of Posts and

Telecommunications, Chongqing 400065, China;
afangyq@cqupt.edu.com, b498640643@qq.com, cgejw@cqupt.edu.com

Keywords: Dynamic inertia weight, Gaussian Disturbance, Particle Swarm Optimization

Abstract: As one of the representatives of intelligent algorithm, Particle Swarm
Optimization (PSO) has been widely concerned and applied since it was proposed.
However, the traditional Particle Swarm Optimization (PSO) algorithm has some
disadvantages, such as premature convergence, local optimization and lo resolution
accuracy. In order to solve the problems in the algorithm, this paper proposes a dynamic
inertia weight Particle Swarm Optimization algorithm based on Gaussian Disturbance.
Through testing experiments with 5 benchmark functions, the improved algorithm has
significantly improved its global search ability and optimization accuracy, and also
overcomes the shortcoming of traditional Particle swarm Optimization (PSO).

1. Introduction

Particle Swarm Optimization (PSO) is a bionic intelligent Optimization algorithm proposed by
Kennedy et al[1] in 1995. It is simple and easy to implement. After being put forward, it has gained
widespread attention and achieved great development. It has been applied in many fields [2-4].

The traditional particle swarm optimization algorithm can find the optimal solution quickly and
accurately when it is used in the optimization of unimodal functions. It has good results. However it
is easy to fall into the local optimum, and the convergence speed is fast when it is used in the
optimization of multimodal functions. The traditional particle swarm optimization algorithm cannot
jump out of the local optimal solution, so that the global optimal value cannot be found. In response
to the problems, Li Rongyu et al [5] proposed an improved particle swarm optimization algorithm
based on levy flight; Qi Xiaobo et al [6] proposed a chaotic particle swarm hybrid algorithm; Wang
Wenyi et al [7] proposed a hybrid algorithm combining particle swarm optimization and genetic
algorithm. The improved algorithms have certain improvement than the original algorithm, but
there are still some shortcomings in the aspects of global optimization ability and optimization
precision.

2018 3rd International Conference on Mechatronics and Information Technology (ICMIT 2018)

Published by CSP © 2018 the Authors
DOI: 10.23977/icmit.2018.017

105

2. Algorithm ideas and steps

2.1 Particle Swarm Optimization.

Particle swarm optimization is derived from the predation behavior of birds. The easiest and
most effective strategy for birds looking for food is to search for the area around the bird closest to
the food. In the algorithm is expressed as: Each particle represents a potential solution. The quality
of particles is judged by fitness. Fitness is calculated from the objective function or specific
optimization problem. The particle's velocity vector determines the direction and distance of the
particle's movement. The traditional particle swarm algorithm steps are described as follows:

a) Initialization：The particle position and the velocity vector of particle are randomly generated
within a prescribed range.

b) Iterative optimization: The fitness value of the particle is calculated and compared to find and
record the position of the current optimal solution. According to the optimal position of the
individual and the optimal position of the population, the speed and position of the particle are
updated to search the entire solution space.

c) Algorithm termination：When the condition is met, the loop is terminated and the optimal
solution is returned.

Among them，the velocity updating formula of particle is:

𝑉𝑉𝑖𝑖𝑖𝑖𝑘𝑘+1 = 𝜔𝜔𝑉𝑉𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑐𝑐1𝑟𝑟1�𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘 � + 𝑐𝑐2𝑟𝑟2(𝑃𝑃𝑔𝑔𝑔𝑔𝑘𝑘 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘) (1)

The position updating formula of particle is:

𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘+1 = 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑉𝑉𝑖𝑖𝑖𝑖𝑘𝑘+1 (2)

In the formula, 𝜔𝜔 is the inertia weight defaults to 1. Vid is the speed of the particle.
X=(X1,X2,…,Xn) represents a population of n particles. Xi=(Xi1,Xi2,…,XiD)T indicates the
position of the i particle in the D-dimensional search space. k is the number of iterations. c1 and c2
are non-negative constants called acceleration factors. R1 and r2 are random numbers in the interval
of [0,1].

2.2 Dynamic inertia weight.

The dynamic inertia weight indicates that ω changes as the number of iterations k changes. By
comparison, this paper use the inertia weight formula put forward in literature [8]. The specific
formula:

ω = 𝜔𝜔𝑠𝑠 − (𝜔𝜔𝑠𝑠 − 𝜔𝜔𝑒𝑒)(𝑘𝑘
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

)2 (3)

Compared to fixed inertia weights, dynamic inertia weights can search for a larger range at the
beginning of the search and a more precise search at the end of the search. Therefore, the global
search ability and search accuracy of the original algorithm can be improved. However, when
dealing with multimodal functions, the algorithm is still easy to fall into local optimum. So
Gaussian Disturbance is added on the basis of dynamic inertia weight to further improve the search
ability of the algorithm. This enables the algorithm to jump out when it is stuck in the local
optimum and continue to search for the global optimum.

106

2.3 Dynamic inertia weight particle swarm optimization algorithm based on Gaussian
Disturbance.

Aiming at the shortcomings of NPSO algorithm in searching ability, this paper proposes a
dynamic inertia weight particle swarm optimization algorithm based on Gaussian Disturbance
(NGPSO). The core idea of the algorithm is to enhance the search ability of the algorithm by adding
Gaussian Disturbance to the position update formula. The improved algorithm not only has the
ability to jump out of local optimum but also improves the search accuracy. The new location
update formula:

𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘+1 = 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘 (1 + ε) (4)

𝜀𝜀 is a random number obeying a normal distribution. Different from most improved algorithms,
this paper does not increase Gaussian Disturbance in each iteration of the loop. Gaussian
Disturbance is only added if the original algorithm performs iterative update times more than 10
times and the global optimal value has not changed. This makes the algorithm not blindly disturbed
during the process, which largely retains the advantages of the original algorithm. It not only
reduces the time complexity of the algorithm but also improves the efficiency and accuracy of the
algorithm. The specific steps of the NGPSO algorithm are as follows:

Step 1 Initializes the position and velocity of the particle
Step 2 Calculates the particle fitness value, and compares the individual extremum and the group

extremum
Step 3 Update the position and velocity of the particles according to formula (1)(2)(3)
Step 4 Determines whether the global optimal value has not changed 10 times. If it changes, go

directly to Step 6. If there is no change, go to Step 5
Step 5 Carries out Gaussian Disturbance to the current position of the particle according to

formula (4)
Step 6 Determines whether the termination condition is satisfied, and if it is satisfied, ends the

loop, and if not, returns to step 2

3. Simulation experiment

In order to verify the performance of the algorithm, this paper compares the three algorithms
NPSO, GPSO and NGPSO. GPSO is a Gaussian Disturbance particle swarm optimization algorithm
with default inertia weight of 1. In the experiment, the population size was set to 20, 𝜔𝜔𝑠𝑠 = 0.9,𝜔𝜔𝑒𝑒 =
0.4, both c1 and c2 are set to 1.49445 and the number of iterations is 300. The test function is as
follows:

f1(x) = 1
4000

∑ 𝑥𝑥𝑖𝑖2 − ∏ cos �𝑥𝑥𝑖𝑖
√𝑖𝑖
� + 1𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1 x ∈ [−600,600]

f2(x) = ∑ [100(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖2)2 + (1 − 𝑥𝑥𝑖𝑖)2]𝑛𝑛−1
𝑖𝑖=1 x ∈ [−2.048,2.048]

f3(x) = −20 exp�−0.2�1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 � − exp �1

𝑛𝑛
∑ cos(2𝜋𝜋𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 � + 20 + e

x1, x2 ∈ [−5,5]
f4(x1,x2) = [𝑥𝑥12 − 10 cos(2𝜋𝜋𝑥𝑥1)] + [𝑥𝑥22 − 10 cos(2𝜋𝜋𝑥𝑥2)] + 20

x1, x2 ∈ [−5.12,5.12]

f5(x1,x2) =
𝑠𝑠𝑠𝑠𝑠𝑠�𝑥𝑥12+𝑥𝑥22

�𝑥𝑥12+𝑥𝑥22
+ 𝑒𝑒

𝑐𝑐𝑐𝑐𝑐𝑐2𝜋𝜋𝑥𝑥1+𝑐𝑐𝑐𝑐𝑐𝑐2𝜋𝜋𝑥𝑥2
2 − 𝑒𝑒 x1, x2 ∈ [−2,2]

Analysis of experimental results. The experimental results are shown in the figure, and Table 1

107

records the specific values of the experimental results.

Fig.1 f1 function Fig.2 f2 function

Fig.3 f3 function Fig.4 f4 function

Fig.5 f5 function

108

Table 1 Experimental result table

Function Optimal fitness Algorithm Fitness

f1
 NPSO -0.2487
0 GPSO -0.0029
 NGPSO -2.6864e-05

f2

 NPSO -7.0875e-29
0 GPSO -5.1835e-31
 NGPSO -2.1187e-33

f3

 NPSO -2.2027e-15
0 GPSO -0.0034
 NGPSO -3.3867e-05

f4

 NPSO -0.1990
0 GPSO -0.0132
 NGPSO -1.3208e-04

f5

 NPSO 0.9615
1.0156 GPSO 1.0148

 NGPSO 1.0155

The experimental data is averaged from 100 experiments. It can be seen from the experimental
results that the improved NGPSO algorithm has stronger global search ability and is less likely to
fall into local optimum when dealing with multimodal function (f1, f4, and f5) whose local
maximum values are close to global maximum value. It also has better stability. When dealing with
the unimodal function, although the Gaussian Disturbance has an impact on accuracy, NGPSO also
has a good ability to find the result. NPSO is easy to fall into local optimum when dealing with
multimodal functions whose local maximum value tends to the global maximum value, but it has
better performance in the unimodal function (f3). GPSO has improved in search ability, but GPSO
is still not as good as NGPSO in optimizing accuracy. In summary, the NGPSO algorithm improves
the PSO algorithm, which is prone to premature convergence, falls into local extremum, and has
low accuracy. It has achieved better results in experiments.

4. Summary

This paper adds Gaussian Disturbance to the dynamic inertia weight particle swarm optimization
algorithm. Let the algorithm have the ability to jump out of the local optimal solution when it falls
into the local optimum, which greatly improves the global search ability of the algorithm. The
improved algorithm has better performance in multimodal function. Different from most improved
algorithms, the Gaussian Disturbance added in this paper is a conditional disturbance in the
optimization process, not a blind disturbance. This makes the algorithm both improved in search
abilities and search accuracy.

References

[1] Kennedy J, Eberhart R C. Particle swarm optimization [C]// Proceedings of the IEEE Conference on Neural
Networks, IV. Perth, Australia: IEEE Press, 1995: 1942-1948.
[2] Long Xue,Jun Cai,Jing Li,Muhua Liu. Application of Particle Swarm Optimization (PSO) Algorithm to Determine
Dichlorvos Residue on the Surface of Navel Orange with Vis-NIR Spectroscopy [J]. Procedia Engineering, 2012,29.
[3] Javad Sadeghi,Saeid Sadeghi,Seyed Taghi Akhavan Niaki. Optimizing a hybrid vendor-managed inventory and
transportation problem with fuzzy demand: An improved particle swarm optimization algorithm [J]. Information
Sciences, 2014,272.
[4] V.K. Patel,R.V. Rao. Design optimization of shell-and-tube heat exchanger using particle swarm optimization

109

technique [J]. Applied Thermal Engineering, 2010, 30(11).
[5] Li Yurong, Wang Ying. Improved Particle Swarm Optimization Based on Lévy Flights [J]. Journal of System
Simulation, 2017, 29(08):1685-1691+1701.
[6] Xu Xiaobo, Zheng Kangfeng, Li Dan, Wu Bin, Yang Yixian. New chaos-particle swarm optimization algorithm [J].
Journal on Communications, 2012, 33(01):24-30+37.
[7] Wang Wenyi, Qin Guangjun, Wang Ruoyu . Research on Genetic Algorithm Based on Particle Swarm Algorithm [J].
Computer Science, 2007(08):145-147.
[8] Sun Linyan. A new improved particle swarm Optimization [D]. Dalian Maritime University, 2008.

110

